Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.240
Filtrar
1.
BMC Bioinformatics ; 25(1): 142, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566005

RESUMEN

BACKGROUND: The rapid advancement of new genomic sequencing technology has enabled the development of multi-omic single-cell sequencing assays. These assays profile multiple modalities in the same cell and can often yield new insights not revealed with a single modality. For example, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) simultaneously profiles the RNA transcriptome and the surface protein expression. The surface protein markers in CITE-Seq can be used to identify cell populations similar to the iterative filtration process in flow cytometry, also called "gating", and is an essential step for downstream analyses and data interpretation. While several packages allow users to interactively gate cells, they often do not process multi-omic sequencing datasets and may require writing redundant code to specify gate boundaries. To streamline the gating process, we developed CITEViz which allows users to interactively gate cells in Seurat-processed CITE-Seq data. CITEViz can also visualize basic quality control (QC) metrics allowing for a rapid and holistic evaluation of CITE-Seq data. RESULTS: We applied CITEViz to a peripheral blood mononuclear cell CITE-Seq dataset and gated for several major blood cell populations (CD14 monocytes, CD4 T cells, CD8 T cells, NK cells, B cells, and platelets) using canonical surface protein markers. The visualization features of CITEViz were used to investigate cellular heterogeneity in CD14 and CD16-expressing monocytes and to detect differential numbers of detected antibodies per patient donor. These results highlight the utility of CITEViz to enable the robust classification of single cell populations. CONCLUSIONS: CITEViz is an R-Shiny app that standardizes the gating workflow in CITE-Seq data for efficient classification of cell populations. Its secondary function is to generate basic feature plots and QC figures specific to multi-omic data. The user interface and internal workflow of CITEViz uniquely work together to produce an organized workflow and sensible data structures for easy data retrieval. This package leverages the strengths of biologists and computational scientists to assess and analyze multi-omic single-cell datasets. In conclusion, CITEViz streamlines the flow cytometry gating workflow in CITE-Seq data to help facilitate novel hypothesis generation.


Asunto(s)
Leucocitos Mononucleares , Programas Informáticos , Humanos , Análisis de Secuencia de ARN/métodos , Flujo de Trabajo , Citometría de Flujo , Proteínas de la Membrana , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos
2.
J Med Virol ; 96(4): e29577, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572977

RESUMEN

Uncovering the immune response to an inactivated SARS-CoV-2 vaccine (In-Vac) and natural infection is crucial for comprehending COVID-19 immunology. Here we conducted an integrated analysis of single-cell RNA sequencing (scRNA-seq) data from serial peripheral blood mononuclear cell (PBMC) samples derived from 12 individuals receiving In-Vac compared with those from COVID-19 patients. Our study reveals that In-Vac induces subtle immunological changes in PBMC, including cell proportions and transcriptomes, compared with profound changes for natural infection. In-Vac modestly upregulates IFN-α but downregulates NF-κB pathways, while natural infection triggers hyperactive IFN-α and NF-κB pathways. Both In-Vac and natural infection alter T/B cell receptor repertoires, but COVID-19 has more significant change in preferential VJ gene, indicating a vigorous immune response. Our study reveals distinct patterns of cellular communications, including a selective activation of IL-15RA/IL-15 receptor pathway after In-Vac boost, suggesting its potential role in enhancing In-Vac-induced immunity. Collectively, our study illuminates multifaceted immune responses to In-Vac and natural infection, providing insights for optimizing SARS-CoV-2 vaccine efficacy.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Leucocitos Mononucleares , FN-kappa B , SARS-CoV-2 , Vacunas de Productos Inactivados , Inmunidad , Análisis de Secuencia de ARN , Anticuerpos Antivirales
3.
Am J Physiol Cell Physiol ; 326(4): C1248-C1261, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581663

RESUMEN

Adipose-derived stem cells (ADSCs) play an important role in the differential capacity for excess energy storage between upper body abdominal (ABD) adipose tissue (AT) and lower body gluteofemoral (GF) AT. We cultured ADSCs from subcutaneous ABD AT and GF AT isolated from eight women with differential body fat distribution and performed single-cell RNA sequencing. Six populations of ADSCs were identified and segregated according to their anatomical origin. The three ADSC subpopulations in GF AT were characterized by strong cholesterol/fatty acid (FA) storage and proliferation signatures. The two ABD subpopulations, differentiated by higher expression of committed preadipocyte marker genes, were set apart by differential expression of extracellular matrix and ribosomal genes. The last population, identified in both depots, was similar to smooth muscle cells and when individually isolated and cultured in vitro they differentiated less than the other subpopulations. This work provides important insight into the use of ADSC as an in vitro model of adipogenesis and suggests that specific subpopulations of GF-ADSCs contribute to the more robust capacity for GF-AT to expand and grow compared with ABD-AT in women.NEW & NOTEWORTHY Identification of distinct subpopulations of adipose-derived stem cells (ADSCs) in upper body abdominal subcutaneous (ABD) and lower body gluteofemoral subcutaneous (GF) adipose tissue depots. In ABD-ADSCs, subpopulations are more committed to adipocyte lineage. GF-ADSC subpopulations are enriched for genes involved in lipids and cholesterol metabolism. Similar depot differences were found in stem cell population identified in freshly isolated stoma vascular fraction. The repertoire of ADSCs subpopulations was different in apple-shaped versus pear-shaped women.


Asunto(s)
Tejido Adiposo , Grasa Subcutánea , Humanos , Femenino , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Análisis de Secuencia de ARN , Colesterol/metabolismo
4.
Sci Rep ; 14(1): 8097, 2024 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582791

RESUMEN

It has been found that progression from leukoplakia to head and neck squamous cell carcinoma (HNSCC) is a long-term process that may involve changes in the multicellular ecosystem. We acquired scRNA-seq samples information from gene expression omnibus and UCSC Xena database. The BEAM function was used to construct the pseudotime trajectory and analyze the differentially expressed genes in different branches. We used the ssGSEA method to explore the correlation between each cell subgroup and survival time, and obtained the cell subgroup related to prognosis. During the progression from leukoplakia to HNSCC, we found several prognostic cell subgroups, such as AURKB + epithelial cells, SFRP1 + fibroblasts, SLC7A8 + macrophages, FCER1A + CD1C + dendritic cells, and TRGC2 + NK/T cells. All cell subgroups had two different fates, one tending to cell proliferation, migration, and enhancement of angiogenesis capacity, and the other tending to inflammatory immune response, leukocyte chemotaxis, and T cell activation. Tumor-promoting genes such as CD163 and CD209 were highly expressed in the myeloid cells, and depletion marker genes such as TIGIT, LAG3 were highly expressed in NK/T cells. Our study may provide a reference for the molecular mechanism of HNSCC and theoretical basis for the development of new therapeutic strategies.


Asunto(s)
Ecosistema , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Leucoplasia , Neoplasias de Cabeza y Cuello/genética , Análisis de Secuencia de ARN , Pronóstico , Microambiente Tumoral/genética
5.
Front Immunol ; 15: 1366955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562928

RESUMEN

Background: Individual T cell responses vary significantly based on the microenvironment present at the time of immune response and on prior induced T cell memory. While the cecal ligation and puncture (CLP) model is the most commonly used murine sepsis model, the contribution of diverse T cell responses has not been explored. We defined T cell subset responses to CLP using single-cell RNA sequencing and examined the effects of prior induced T cell memory (Immune Education) on these responses. We hypothesized that Immune Education prior to CLP would alter T cell responses at the single cell level at a single, early post-CLP time point. Methods: Splenic T cells were isolated from C57BL/6 mice. Four cohorts were studied: Control, Immune-Educated, CLP, and Immune-Educated CLP. At age 8 weeks, Immune-Educated and Immune-Educated CLP mice received anti-CD3ϵ antibody; Control and CLP mice were administered an isotype control. CLP (two punctures with a 22-gauge needle) was performed at 12-13 weeks of life. Mice were sacrificed at baseline or 24-hours post-CLP. Unsupervised clustering of the transcriptome library identified six distinct T cell subsets: quiescent naïve CD4+, primed naïve CD4+, memory CD4+, naïve CD8+, activated CD8+, and CD8+ cytotoxic T cell subsets. T cell subset specific gene set enrichment analysis and Hurdle analysis for differentially expressed genes (DEGs) were performed. Results: T cell responses to CLP were not uniform - subsets of activated and suppressed T cells were identified. Immune Education augmented specific T cell subsets and led to genomic signatures favoring T cell survival in unoperated and CLP mice. Additionally, the combination of Immune Education and CLP effected the expression of genes related to T cell activity in ways that differed from CLP alone. Validating our finding that IL7R pathway markers were upregulated in Immune-Educated CLP mice, we found that Immune Education increased T cell surface IL7R expression in post-CLP mice. Conclusion: Immune Education enhanced the expression of genes associated with T cell survival in unoperated and CLP mice. Induction of memory T cell compartments via Immune Education combined with CLP may increase the model's concordance to human sepsis.


Asunto(s)
Punciones , Sepsis , Ratones , Humanos , Animales , Lactante , Supervivencia Celular , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN
6.
Sci Data ; 11(1): 355, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589415

RESUMEN

Chronic hepatitis B (CHB) is a major global health challenge. CHB can be controlled by antivirals but a therapeutic cure is lacking. CHB is characterized by limited HBV-specific T cell reactivity and functionality and expression of inhibitory receptors. The mechanisms driving these T cell phenotypes are only partially understood. Here, we created a single-cell RNA-sequencing dataset of HBV immune responses in patients to contribute to a better understanding of the dysregulated immunity. Blood samples of a well-defined cohort of 21 CHB and 10 healthy controls, including a subset of 5 matched liver biopsies, were collected. scRNA-seq data of total immune cells (55,825) plus sorted HBV-specific (1,963), non-naive (32,773) and PD1+ T cells (96,631) was generated using the 10X Genomics platform (186,123 cells) or the full-length Smart-seq2 protocol (1,069 cells). The shared transcript count matrices of single-cells serve as a valuable resource describing transcriptional changes underlying dysfunctional HBV-related T cell responses in blood and liver tissue and offers the opportunity to identify targets or biomarkers for HBV-related immune exhaustion.


Asunto(s)
Hepatitis B Crónica , Inmunidad Celular , Humanos , Virus de la Hepatitis B , Hepatitis B Crónica/genética , Hepatitis B Crónica/inmunología , ARN , Análisis de la Célula Individual , Análisis de Secuencia de ARN , Linfocitos T/inmunología , Hígado/virología
7.
Wiley Interdiscip Rev RNA ; 15(2): e1842, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605484

RESUMEN

Spatial transcriptomics (ST) is featured by high-throughput gene expression profiling within their native cell and tissue context, offering a means to investigate gene regulatory networks in tissue microenvironment. In situ sequencing (ISS) is an imaging-based ST technology that simultaneously detects hundreds to thousands of genes at subcellular resolution. As a highly reproducible and robust technique, ISS has been widely adapted and undergone a series of technical iterations. As the interest in ISS-based spatial transcriptomic analysis grows, scalable and integrated data analysis workflows are needed to facilitate the applications of ISS in different research fields. This review presents the state-of-the-art bioinformatic toolkits for ISS data analysis, which covers the upstream and downstream analysis workflows, including image analysis, cell segmentation, clustering, functional enrichment, detection of spatially variable genes and cell clusters, spatial cell-cell interactions, and trajectory inference. To assist the community in choosing the right tools for their research, the application of each tool and its compatibility with ISS data are reviewed in detailed. Finally, future perspectives and challenges concerning how to integrate heterogeneous tools into a user-friendly analysis pipeline are discussed. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , ARN , Análisis Espacial
8.
NPJ Syst Biol Appl ; 10(1): 36, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580667

RESUMEN

By profiling gene expression in individual cells, single-cell RNA-sequencing (scRNA-seq) can resolve cellular heterogeneity and cell-type gene expression dynamics. Its application to time-series samples can identify temporal gene programs active in different cell types, for example, immune cells' responses to viral infection. However, current scRNA-seq analysis has limitations. One is the low number of genes detected per cell. The second is insufficient replicates (often 1-2) due to high experimental cost. The third lies in the data analysis-treating individual cells as independent measurements leads to inflated statistics. To address these, we explore a new computational framework, specifically whether "metacells" constructed to maintain cellular heterogeneity within individual cell types (or clusters) can be used as "replicates" for increasing statistical rigor. Toward this, we applied SEACells to a time-series scRNA-seq dataset from peripheral blood mononuclear cells (PBMCs) after SARS-CoV-2 infection to construct metacells, and used them in maSigPro for quadratic regression to find significantly differentially expressed genes (DEGs) over time, followed by clustering expression velocity trends. We showed that such metacells retained greater expression variances and produced more biologically meaningful DEGs compared to either metacells generated randomly or from simple pseudobulk methods. More specifically, this approach correctly identified the known ISG15 interferon response program in almost all PBMC cell types and many DEGs enriched in the previously defined SARS-CoV-2 infection response pathway. It also uncovered additional and more cell type-specific temporal gene expression programs. Overall, our results demonstrate that the metacell-pseudoreplicate strategy could potentially overcome the limitation of 1-2 replicates.


Asunto(s)
COVID-19 , Perfilación de la Expresión Génica , Humanos , Perfilación de la Expresión Génica/métodos , Leucocitos Mononucleares/metabolismo , Análisis de Secuencia de ARN/métodos , COVID-19/genética , SARS-CoV-2
9.
Nat Commun ; 15(1): 3108, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600080

RESUMEN

The senescence of fruit is a complex physiological process, with various cell types within the pericarp, making it highly challenging to elucidate their individual roles in fruit senescence. In this study, a single-cell expression atlas of the pericarp of pitaya (Hylocereus undatus) is constructed, revealing exocarp and mesocarp cells undergoing the most significant changes during the fruit senescence process. Pseudotime analysis establishes cellular differentiation and gene expression trajectories during senescence. Early-stage oxidative stress imbalance is followed by the activation of resistance in exocarp cells, subsequently senescence-associated proteins accumulate in the mesocarp cells at late-stage senescence. The central role of the early response factor HuCMB1 is unveiled in the senescence regulatory network. This study provides a spatiotemporal perspective for a deeper understanding of the dynamic senescence process in plants.


Asunto(s)
Cactaceae , Frutas , Frutas/genética , Proteínas/genética , Cactaceae/genética , Análisis de Secuencia de ARN
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38600665

RESUMEN

Single-cell RNA sequencing (scRNA-seq) facilitates the study of cell type heterogeneity and the construction of cell atlas. However, due to its limitations, many genes may be detected to have zero expressions, i.e. dropout events, leading to bias in downstream analyses and hindering the identification and characterization of cell types and cell functions. Although many imputation methods have been developed, their performances are generally lower than expected across different kinds and dimensions of data and application scenarios. Therefore, developing an accurate and robust single-cell gene expression data imputation method is still essential. Considering to maintain the original cell-cell and gene-gene correlations and leverage bulk RNA sequencing (bulk RNA-seq) data information, we propose scINRB, a single-cell gene expression imputation method with network regularization and bulk RNA-seq data. scINRB adopts network-regularized non-negative matrix factorization to ensure that the imputed data maintains the cell-cell and gene-gene similarities and also approaches the gene average expression calculated from bulk RNA-seq data. To evaluate the performance, we test scINRB on simulated and experimental datasets and compare it with other commonly used imputation methods. The results show that scINRB recovers gene expression accurately even in the case of high dropout rates and dimensions, preserves cell-cell and gene-gene similarities and improves various downstream analyses including visualization, clustering and trajectory inference.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , RNA-Seq , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Análisis por Conglomerados , Expresión Génica , Perfilación de la Expresión Génica , Programas Informáticos
11.
Front Immunol ; 15: 1363278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601160

RESUMEN

Purpose: A mouse model of irradiation (IR)-induced heart injury was established to investigate the early changes in cardiac function after radiation and the role of cardiac macrophages in this process. Methods: Cardiac function was evaluated by heart-to-tibia ratio, lung-to-heart ratio and echocardiography. Immunofluorescence staining and flow cytometry analysis were used to evaluate the changes of macrophages in the heart. Immune cells from heart tissues were sorted by magnetic beads for single-cell RNA sequencing, and the subsets of macrophages were identified and analyzed. Trajectory analysis was used to explore the differentiation relationship of each macrophage subset. The differentially expressed genes (DEGs) were compared, and the related enriched pathways were identified. Single-cell regulatory network inference and clustering (SCENIC) analysis was performed to identify the potential transcription factors (TFs) which participated in this process. Results: Cardiac function temporarily decreased on Day 7 and returned to normal level on Day 35, accompanied by macrophages decreased and increased respectively. Then, we identified 7 clusters of macrophages by single-cell RNA sequencing and found two kinds of stage specific macrophages: senescence-associated macrophage (Cdkn1ahighC5ar1high) on Day 7 and interferon-associated macrophage (Ccr2highIsg15high) on Day 35. Moreover, we observed cardiac macrophages polarized over these two-time points based on M1/M2 and CCR2/major histocompatibility complex II (MHCII) expression. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses suggested that macrophages on Day 7 were characterized by an inflammatory senescent phenotype with enhanced chemotaxis and inflammatory factors, while macrophages on Day 35 showed enhanced phagocytosis with reduced inflammation, which was associated with interferon-related pathways. SCENIC analysis showed AP-1 family members were associated with IR-induced macrophages changes. Conclusion: We are the first study to characterize the diversity, features, and evolution of macrophages during the early stages in an IR-induced cardiac injury animal model.


Asunto(s)
Macrófagos , Fagocitosis , Ratones , Animales , Inflamación/metabolismo , Interferones/metabolismo , Análisis de Secuencia de ARN
12.
BMC Cancer ; 24(1): 451, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605343

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the prevailing histological subtype of renal cell carcinoma and has unique metabolic reprogramming during its occurrence and development. Cell senescence is one of the newly identified tumor characteristics. However, there is a dearth of methodical and all-encompassing investigations regarding the correlation between the broad-ranging alterations in metabolic processes associated with aging and ccRCC. We utilized a range of analytical methodologies, such as protein‒protein interaction network analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, to form and validate a risk score model known as the senescence-metabolism-related risk model (SeMRM). Our study demonstrated that SeMRM could more precisely predict the OS of ccRCC patients than the clinical prognostic markers in use. By utilizing two distinct datasets of ccRCC, ICGC-KIRC (the International Cancer Genome Consortium) and GSE29609, as well as a single-cell dataset (GSE156632) and real patient clinical information, and further confirmed the relationship between the senescence-metabolism-related risk score (SeMRS) and ccRCC patient progression. It is worth noting that patients who were classified into different subgroups based on the SeMRS exhibited notable variations in metabolic activity, immune microenvironment, immune cell type transformation, mutant landscape, and drug responsiveness. We also demonstrated that PTGER4, a key gene in SeMRM, regulated ccRCC cell proliferation, lipid levels and the cell cycle in vivo and in vitro. Together, the utilization of SeMRM has the potential to function as a dependable clinical characteristic to increase the accuracy of prognostic assessment for patients diagnosed with ccRCC, thereby facilitating the selection of suitable treatment strategies.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , 60645 , Senescencia Celular/genética , Análisis de Secuencia de ARN , Microambiente Tumoral/genética , Subtipo EP4 de Receptores de Prostaglandina E
13.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38605641

RESUMEN

Simulation of RNA-seq reads is critical in the assessment, comparison, benchmarking and development of bioinformatics tools. Yet the field of RNA-seq simulators has progressed little in the last decade. To address this need we have developed BEERS2, which combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline. BEERS2 takes input transcripts (typically fully length messenger RNA transcripts with polyA tails) from either customizable input or from CAMPAREE simulated RNA samples. It produces realistic reads of these transcripts as FASTQ, SAM or BAM formats with the SAM or BAM formats containing the true alignment to the reference genome. It also produces true transcript-level quantification values. BEERS2 combines a flexible and highly configurable design with detailed simulation of the entire library preparation and sequencing pipeline and is designed to include the effects of polyA selection and RiboZero for ribosomal depletion, hexamer priming sequence biases, GC-content biases in polymerase chain reaction (PCR) amplification, barcode read errors and errors during PCR amplification. These characteristics combine to make BEERS2 the most complete simulation of RNA-seq to date. Finally, we demonstrate the use of BEERS2 by measuring the effect of several settings on the popular Salmon pseudoalignment algorithm.


Asunto(s)
Genoma , ARN , RNA-Seq , Análisis de Secuencia de ARN , Simulación por Computador , ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Genome Biol ; 25(1): 94, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622708

RESUMEN

Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.


Asunto(s)
Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos
15.
Genome Biol ; 25(1): 96, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622747

RESUMEN

We present a non-parametric statistical method called TDEseq that takes full advantage of smoothing splines basis functions to account for the dependence of multiple time points in scRNA-seq studies, and uses hierarchical structure linear additive mixed models to model the correlated cells within an individual. As a result, TDEseq demonstrates powerful performance in identifying four potential temporal expression patterns within a specific cell type. Extensive simulation studies and the analysis of four published scRNA-seq datasets show that TDEseq can produce well-calibrated p-values and up to 20% power gain over the existing methods for detecting temporal gene expression patterns.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Simulación por Computador , Expresión Génica
16.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626724

RESUMEN

BACKGROUND: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS: A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS: These validated results show significant improvement over current bovine genome annotations.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Bovinos/genética , Animales , Análisis de Secuencia de ARN , Transcriptoma , Sitios de Carácter Cuantitativo , ARN , Isoformas de Proteínas , Anotación de Secuencia Molecular
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38628114

RESUMEN

Spatial transcriptomics (ST) has become a powerful tool for exploring the spatial organization of gene expression in tissues. Imaging-based methods, though offering superior spatial resolutions at the single-cell level, are limited in either the number of imaged genes or the sensitivity of gene detection. Existing approaches for enhancing ST rely on the similarity between ST cells and reference single-cell RNA sequencing (scRNA-seq) cells. In contrast, we introduce stDiff, which leverages relationships between gene expression abundance in scRNA-seq data to enhance ST. stDiff employs a conditional diffusion model, capturing gene expression abundance relationships in scRNA-seq data through two Markov processes: one introducing noise to transcriptomics data and the other denoising to recover them. The missing portion of ST is predicted by incorporating the original ST data into the denoising process. In our comprehensive performance evaluation across 16 datasets, utilizing multiple clustering and similarity metrics, stDiff stands out for its exceptional ability to preserve topological structures among cells, positioning itself as a robust solution for cell population identification. Moreover, stDiff's enhancement outcomes closely mirror the actual ST data within the batch space. Across diverse spatial expression patterns, our model accurately reconstructs them, delineating distinct spatial boundaries. This highlights stDiff's capability to unify the observed and predicted segments of ST data for subsequent analysis. We anticipate that stDiff, with its innovative approach, will contribute to advancing ST imputation methodologies.


Asunto(s)
Benchmarking , Perfilación de la Expresión Génica , Análisis por Conglomerados , Difusión , Cadenas de Markov , Análisis de Secuencia de ARN , Transcriptoma
18.
Arterioscler Thromb Vasc Biol ; 44(5): 1135-1143, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572648

RESUMEN

BACKGROUND: Acute coronary syndrome (ACS) involves plaque-related thrombosis, causing primary ischemic cardiomyopathy or lethal arrhythmia. We previously demonstrated a unique immune landscape of myeloid cells in the culprit plaques causing ACS by using single-cell RNA sequencing. Here, we aimed to characterize T cells in a single-cell level, assess clonal expansion of T cells, and find a therapeutic target to prevent ACS. METHODS: We obtained the culprit lesion plaques from 4 patients with chronic coronary syndrome (chronic coronary syndrome plaques) and the culprit lesion plaques from 3 patients with ACS (ACS plaques) who were candidates for percutaneous coronary intervention with directional coronary atherectomy. Live CD45+ immune cells were sorted from each pooled plaque samples and applied to the 10× platform for single-cell RNA sequencing analysis. We also extracted RNA from other 3 ACS plaque samples and conducted unbiased TCR (T-cell receptor) repertoire analysis. RESULTS: CD4+ T cells were divided into 5 distinct clusters: effector, naive, cytotoxic, CCR7+ (C-C chemokine receptor type 7) central memory, and FOXP3 (forkhead box P3)+ regulatory CD4+ T cells. The proportion of central memory CD4+ T cells was higher in the ACS plaques. Correspondingly, dendritic cells also tended to express more HLAs (human leukocyte antigens) and costimulatory molecules in the ACS plaques. The velocity analysis suggested the differentiation flow from central memory CD4+ T cells into effector CD4+ T cells and that from naive CD4+ T cells into central memory CD4+ T cells in the ACS plaques, which were not observed in the chronic coronary syndrome plaques. The bulk repertoire analysis revealed clonal expansion of TCRs in each patient with ACS and suggested that several peptides in the ACS plaques work as antigens and induced clonal expansion of CD4+ T cells. CONCLUSIONS: For the first time, we revealed single cell-level characteristics of CD4+ T cells in patients with ACS. CD4+ T cells could be therapeutic targets of ACS. REGISTRATION: URL: https://upload.umin.ac.jp/cgi-open-bin/icdr_e/ctr_view.cgi?recptno=R000046521; Unique identifier: UMIN000040747.


Asunto(s)
Síndrome Coronario Agudo , Linfocitos T CD4-Positivos , Placa Aterosclerótica , Análisis de la Célula Individual , Humanos , Síndrome Coronario Agudo/inmunología , Síndrome Coronario Agudo/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Anciano , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Vasos Coronarios/inmunología , Vasos Coronarios/patología , Análisis de Secuencia de ARN , Enfermedad de la Arteria Coronaria/inmunología , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Fenotipo
19.
Anal Chem ; 96(16): 6301-6310, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597061

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a transformative technology that unravels the intricate cellular state heterogeneity. However, the Poisson-dependent cell capture and low sensitivity in scRNA-seq methods pose challenges for throughput and samples with a low RNA-content. Herein, to address these challenges, we present Well-Paired-Seq2 (WPS2), harnessing size-exclusion and quasi-static hydrodynamics for efficient cell capture. WPS2 exploits molecular crowding effect, tailing activity enhancement in reverse transcription, and homogeneous enzymatic reaction in the initial bead-based amplification to achieve 3116 genes and 8447 transcripts with an average of ∼20000 reads per cell. WPS2 detected 1420 more genes and 4864 more transcripts than our previous Well-Paired-Seq. It sensitively characterizes transcriptomes of low RNA-content single cells and nuclei, overcoming the Poisson limit for cell and barcoded bead capture. WPS2 also profiles transcriptomes from frozen clinical samples, revealing heterogeneous tumor copy number variations and intercellular crosstalk in clear cell renal cell carcinomas. Additionally, we provide the first single-cell-level characterization of rare metanephric adenoma (MA) and uncover potential specific markers. With the advantages of high sensitivity and high throughput, WPS2 holds promise for diverse basic and clinical research.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , ARN/genética , Análisis de Secuencia de ARN , Neoplasias Renales/genética , Neoplasias Renales/patología , Secuenciación de Nucleótidos de Alto Rendimiento
20.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612639

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique for investigating biological heterogeneity at the single-cell level in human systems and model organisms. Recent advances in scRNA-seq have enabled the pooling of cells from multiple samples into single libraries, thereby increasing sample throughput while reducing technical batch effects, library preparation time, and the overall cost. However, a comparative analysis of scRNA-seq methods with and without sample multiplexing is lacking. In this study, we benchmarked methods from two representative platforms: Parse Biosciences (Parse; with sample multiplexing) and 10x Genomics (10x; without sample multiplexing). By using peripheral blood mononuclear cells (PBMCs) obtained from two healthy individuals, we demonstrate that demultiplexed scRNA-seq data obtained from Parse showed similar cell type frequencies compared to 10x data where samples were not multiplexed. Despite relatively lower cell capture affecting library preparation, Parse can detect rare cell types (e.g., plasmablasts and dendritic cells) which is likely due to its relatively higher sensitivity in gene detection. Moreover, a comparative analysis of transcript quantification between the two platforms revealed platform-specific distributions of gene length and GC content. These results offer guidance for researchers in designing high-throughput scRNA-seq studies.


Asunto(s)
Benchmarking , Leucocitos Mononucleares , Humanos , Biblioteca de Genes , Genómica , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...